Fibonacci sequence in music
http://www.youtube.com/watch?v=2pbEarwdusc&feature=relatedΛεονάρντο Φιμπονάτσι,1170-1240 (Leonardo Pisano Fibonacci)
Γεννήθηκε στη δεκαετία του 1170 στη Πίζα και πέθανε αυτή του 1240. Το πραγματικό του όνομα ήταν Leonardo Pisano, όμως ο ίδιος αποκαλούσε τον εαυτό του Fibonacci, σύντμηση του Filius Bonacci (γιος του Bonacci), από το όνομα του πατέρα του.
O Fibonacci αυτοαποκαλούνταν μερικές φορές και «Bigollo», που σημαίνει ταξιδιώτης, όπως και ήταν.
O Fibonacci αυτοαποκαλούνταν μερικές φορές και «Bigollo», που σημαίνει ταξιδιώτης, όπως και ήταν.
Ο πατέρας του Leonardo, Guilielmo Bonacci, ήταν γραμματέας της Δημοκρατίας της Πίζας στη Βορειοαφρικανική πόλη Bugia. Ο Fibonacci μεγάλωσε εκεί και η εκπαίδευσή του επηρεάστηκε σημαντικά από τους Μαυριτανούς αλλά και από τα ταξίδια που έκανε αργότερα κατά μήκος της Μεσογειακής ακτής (Αίγυπτο, Συρία, Ελλάδα, Σικελία και Προβηγκία).
Έτσι μελέτησε και έμαθε τις μαθηματικές τεχνικές και τα αριθμητικά συστήματα που είχαν υιοθετηθεί σε εκείνες τις περιοχές.
Έτσι μελέτησε και έμαθε τις μαθηματικές τεχνικές και τα αριθμητικά συστήματα που είχαν υιοθετηθεί σε εκείνες τις περιοχές.
Γύρω στο 1200, ο Fibonacci επέστρεψε στην Πίζα, όπου για τα επόμενα 25 χρόνια επεξεργαζόταν τις δικές του μαθηματικές συνθέσεις. Η φήμη του ήταν τόσο μεγάλη, που προσέλκυσε την προσοχή του Ρωμαίου Αυτοκράτορα και ισχυρότερου άνδρα της εποχής, Φρειδερίκου Β’ (1194-1250). Ο Φρειδερίκος Β’ ενδιαφερόταν ιδιαίτερα για τα μαθηματικά και τις επιστήμες, ήταν προστάτης των πουλιών και των αγρίων ζώων και ενθάρρυνε τη μόρφωση σ΄ όλα τα πεδία. Είχε καταφέρει να δημιουργήσει ένα κράτος συνδυάζοντας όλες τις φυλές και τις κουλτούρες. Υπάρχουν επίσης αναφορές ότι είχε μυηθεί στο μυστικισμό των Σούφι και ότι βρισκόταν σε επαφή με τους Ασσασσίνους (μυστικό τάγμα ιδρυμένο στην Περσία).
Η συναναστροφή του Fibonacci με τους ακόλουθους του αυτοκράτορα υπήρξε πολύ σημαντική. Είχε επαφές κυρίως με δύο από αυτούς στην αυλή του Αυτοκράτορα στο Παλέρμο. Ο ένας ήταν ο Theodore Physicus, ο φιλόσοφος της αυλής (στον οποίο έχει στείλει και το τελευταίο του μαθηματικό έργο), που δοκίμαζε την εξυπνάδα του μπροστά στον Φρειδερίκο. Ο άλλος ήταν ο Michael Scott (1175-1234), o οποίος αναφέρεται ως ο αστρολόγος της αυλής. Ο M.Scott ήταν και ο δάσκαλος του Fibonacci. Τα πεδία ενδιαφέροντος του Michael Scott ήταν τα μαθηματικά, η φυσική, η φαρμακευτική, η αστρολογία και ο αποκρυφισμός και μετέφρασε και σχολίασε αρκετά αραβικά και ελληνικά έργα πάνω σε αυτά τα θέματα.
Ο Μαθηματικός
Ο Fibonacci έγραψε σημαντικά κείμενα, τα οποία έπαιξαν σημαντικό ρόλο στην αναζωογόνηση των αρχαίων μαθηματικών τεχνών:
(α) Liber Abbaci (Tο Βιβλίο των Υπολογισμών), 1202 (1228)
Με αυτό του το έργο παρουσίασε στη Δυτική Ευρώπη το ινδοαραβικό αριθμητικό σύστημα και τους κανόνες του (1,2,3,4,5,6,7,8,9 και ένα σύμβολο για το μηδέν (0) καθώς και την υποδιαστολή). Επίσης, με ένα πρόβλημα που θέτει στο τρίτο μέρος του Liber abaci καταλήγει στην παρουσίαση της λεγόμενης Ακολουθίας Fibonacci (το όνομα Fibonacci δόθηκε σε αυτή την ακολουθία από το Γάλλο μαθηματικό Edouard Lucas (1842-1891). Η επανέκδοση του Liber Abbaci (1228) με συμπληρωματικά στοιχεία, αφιερώθηκε στον Michael Scott.
(β) Practica Geometriae (Πρακτική της Γεωμετρίας), 1220
Tο έργο αυτό είναι αφιερωμένο στον Dominicus Hispanus, ένα ακόμη μέλος της Αυλής του Φρειδερίκου Β’. Περιλαμβάνει γεωμετρικά προβλήματα με θεωρήματα βασισμένα στα Στοιχεία του Ευκλείδη. Αντί για τις αποδείξεις των θεωρημάτων αυτών, στο βιβλίο αναφέρονται πρακτικές πληροφορίες για τη χρήση τους.
(γ) Liber Quadratorum (Το Βιβλίο των Τετραγωνικών αριθμών), 1225
Είναι ένα βιβλίο αριθμολογίας, στο οποίο εξετάζει επίσης και μεθόδους εύρεσης πυθαγορικών τριάδων. Αφιερώθηκε στο Φρειδερίκο Β’.
(α) Liber Abbaci (Tο Βιβλίο των Υπολογισμών), 1202 (1228)
Με αυτό του το έργο παρουσίασε στη Δυτική Ευρώπη το ινδοαραβικό αριθμητικό σύστημα και τους κανόνες του (1,2,3,4,5,6,7,8,9 και ένα σύμβολο για το μηδέν (0) καθώς και την υποδιαστολή). Επίσης, με ένα πρόβλημα που θέτει στο τρίτο μέρος του Liber abaci καταλήγει στην παρουσίαση της λεγόμενης Ακολουθίας Fibonacci (το όνομα Fibonacci δόθηκε σε αυτή την ακολουθία από το Γάλλο μαθηματικό Edouard Lucas (1842-1891). Η επανέκδοση του Liber Abbaci (1228) με συμπληρωματικά στοιχεία, αφιερώθηκε στον Michael Scott.
(β) Practica Geometriae (Πρακτική της Γεωμετρίας), 1220
Tο έργο αυτό είναι αφιερωμένο στον Dominicus Hispanus, ένα ακόμη μέλος της Αυλής του Φρειδερίκου Β’. Περιλαμβάνει γεωμετρικά προβλήματα με θεωρήματα βασισμένα στα Στοιχεία του Ευκλείδη. Αντί για τις αποδείξεις των θεωρημάτων αυτών, στο βιβλίο αναφέρονται πρακτικές πληροφορίες για τη χρήση τους.
(γ) Liber Quadratorum (Το Βιβλίο των Τετραγωνικών αριθμών), 1225
Είναι ένα βιβλίο αριθμολογίας, στο οποίο εξετάζει επίσης και μεθόδους εύρεσης πυθαγορικών τριάδων. Αφιερώθηκε στο Φρειδερίκο Β’.
(δ) Flos (Το Λουλούδι), 1225
Το βιβλίο αυτό είναι μια συλλογή των λύσεων των προβλημάτων και των τετραγωνικών εξισώσεων με δύο ή περισσότερες μεταβλητές που τέθηκαν στον Fibonacci υπό την παρουσία του Φρειδερίκου από τον Johannes of Palermo, μέλος της Αυλής.
(ε) Γράμμα στον Δάσκαλο TheodorusΤο βιβλίο αυτό είναι μια συλλογή των λύσεων των προβλημάτων και των τετραγωνικών εξισώσεων με δύο ή περισσότερες μεταβλητές που τέθηκαν στον Fibonacci υπό την παρουσία του Φρειδερίκου από τον Johannes of Palermo, μέλος της Αυλής.
Περί γεωμετρικής ανάλυσης.
Η προσωπική του ζωή
Τα μόνα στοιχεία που έχουμε για την προσωπικότητά του, τα λαμβάνουμε από λίγες προτάσεις στη δεύτερη έκδοση του Liber Abbaci τo 1228, οι οποίες εκπέμπουν, εκτός από τη μαθηματική ποιότητα του μυαλού του, την νοητική του περιέργεια και τον ενθουσιασμό, ένα αίσθημα σεβασμού για την αξιοπρεπή ταπεινότητα του ανθρώπου αυτού.
Τα επιτεύγματά του
Εκτός από το πολύ σημαντικό γεγονός της σύνθεσης και παρουσίασης των ινδοαραβικών μαθηματικών και τεχνικών στο νέο κοινό της Δύσης, το πιο γνωστό από τα επιτεύγματά του είναι αναμφισβήτητα η ακολουθία στην οποία έχει δοθεί το όνομά του: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, ...
στην οποία κάθε αριθμός είναι άθροισμα των δύο προηγούμενων.
Η ακολουθία Fibonacci είναι μια βάση για τη γεωμετρία Φράκταλ. Επιπλέον, ο λόγος δύο διαδοχικών αριθμών της ακολουθίας τείνει προς την Χρυσή Τομή ή Χρυσή Αναλογία, ή Χρυσό Αριθμό Φ =1.618033989.
Αν και υπάρχουν αναφορές ότι αυτή η ακολουθία είχε αναφερθεί περίπου μισό αιώνα πριν, από τους Ινδούς Gospala και Hemachandra, ο Fibonacci συνάντησε αυτή την ακολουθία μελετώντας την Μεγάλη Πυραμίδα του Χέοπα στην Αίγυπτο, η οποία και είναι χτισμένη με βάση τον αριθμό Φ.
Ο Fibonacci πίστευε ότι αυτοί οι αριθμοί μπορούν να ξεκλειδώσουν τα μυστικά της Φύσης. Αυτό μπορούμε να το αντιληφθούμε αν λάβουμε υπόψη πως η ακολουθία του, καθώς και η λογαριθμική σπείρα που δημιουργείται σε σχέση με τον αριθμό Φ, απαντώνται σχεδόν παντού:
1. Βοτανολογία, Βιολογία:
Στην ανάπτυξη των φυτών, στο γενεαλογικό δένδρο της αρσενικής μέλισσας, σε κελύφη σαλιγκαριών, στα κέρατα του κριού, στην ανάπτυξη του ανθρώπου, στα σταυροδρόμια της βιολογίας και των μαθηματικών.
2. Φυσικές Επιστήμες:
Στην ατομική σχάση, στην ηλεκτρονική ανάλυση δικτύων, στον προγραμματισμό των Η/Υ, στις διακλαδώσεις των ποταμών, στα κύματα των ωκεανών, στους ανεμοστρόβιλους, στο ηλιακό σύστημα, στους γαλαξίες και άλλα.
3. Οικονομία, Εκπαίδευση, Ποίηση, Μουσική:
Στους κύκλους των χρηματαγορών, στην εκπαίδευση μαθητών με δυσκολίες στη μάθηση, στην ανάλυση της ποίησης, σε μουσικά αριστουργήματα.
4. Αρχαιολογία, Αρχιτεκτονική, Τέχνη:
Στη Μεγάλη Πυραμίδα του Χέοπα, στη Μινωική αρχιτεκτονική, στον Παρθενώνα της Ακρόπολης Αθηνών, σε μωσαϊκά των αρχαίων Ρωμαίων και άλλα.
Εκτός από το πολύ σημαντικό γεγονός της σύνθεσης και παρουσίασης των ινδοαραβικών μαθηματικών και τεχνικών στο νέο κοινό της Δύσης, το πιο γνωστό από τα επιτεύγματά του είναι αναμφισβήτητα η ακολουθία στην οποία έχει δοθεί το όνομά του: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, ...
στην οποία κάθε αριθμός είναι άθροισμα των δύο προηγούμενων.
Η ακολουθία Fibonacci είναι μια βάση για τη γεωμετρία Φράκταλ. Επιπλέον, ο λόγος δύο διαδοχικών αριθμών της ακολουθίας τείνει προς την Χρυσή Τομή ή Χρυσή Αναλογία, ή Χρυσό Αριθμό Φ =1.618033989.
Αν και υπάρχουν αναφορές ότι αυτή η ακολουθία είχε αναφερθεί περίπου μισό αιώνα πριν, από τους Ινδούς Gospala και Hemachandra, ο Fibonacci συνάντησε αυτή την ακολουθία μελετώντας την Μεγάλη Πυραμίδα του Χέοπα στην Αίγυπτο, η οποία και είναι χτισμένη με βάση τον αριθμό Φ.
Ο Fibonacci πίστευε ότι αυτοί οι αριθμοί μπορούν να ξεκλειδώσουν τα μυστικά της Φύσης. Αυτό μπορούμε να το αντιληφθούμε αν λάβουμε υπόψη πως η ακολουθία του, καθώς και η λογαριθμική σπείρα που δημιουργείται σε σχέση με τον αριθμό Φ, απαντώνται σχεδόν παντού:
1. Βοτανολογία, Βιολογία:
Στην ανάπτυξη των φυτών, στο γενεαλογικό δένδρο της αρσενικής μέλισσας, σε κελύφη σαλιγκαριών, στα κέρατα του κριού, στην ανάπτυξη του ανθρώπου, στα σταυροδρόμια της βιολογίας και των μαθηματικών.
2. Φυσικές Επιστήμες:
Στην ατομική σχάση, στην ηλεκτρονική ανάλυση δικτύων, στον προγραμματισμό των Η/Υ, στις διακλαδώσεις των ποταμών, στα κύματα των ωκεανών, στους ανεμοστρόβιλους, στο ηλιακό σύστημα, στους γαλαξίες και άλλα.
3. Οικονομία, Εκπαίδευση, Ποίηση, Μουσική:
Στους κύκλους των χρηματαγορών, στην εκπαίδευση μαθητών με δυσκολίες στη μάθηση, στην ανάλυση της ποίησης, σε μουσικά αριστουργήματα.
4. Αρχαιολογία, Αρχιτεκτονική, Τέχνη:
Στη Μεγάλη Πυραμίδα του Χέοπα, στη Μινωική αρχιτεκτονική, στον Παρθενώνα της Ακρόπολης Αθηνών, σε μωσαϊκά των αρχαίων Ρωμαίων και άλλα.
Η Λογαριθμική Σπείρα του Fibonacci
Ο Leonardo Fibonacci ήταν δικαιολογημένα η μεγαλύτερη μαθηματική ιδιοφυΐα του Μεσαίωνα.
Με το θάρρος του, με το πνεύμα συγκριτικής έρευνας και φιλομάθειας κατάφερε να ξεκλειδώσει κάποια από τα εσωτερικά μυστικά της φύσης και να φέρει ένα μέρος από το Φως της Ανατολής στη σκοτεινή και μεσαιωνική Δύση. Ήταν πραγματικά ένας πνευματικά ελκυστικός μαθηματικός που κατόρθωσε να συνδέσει τις θεωρητικές παραδόσεις των Ελλήνων και τις μαθηματικές παραδόσεις των Αράβων, εγκαθιδρύοντάς τους στην Ευρώπη. Τα γενικότερα επιτεύγματά του αναγνωρίσθηκαν –και αναγνωρίζονται- χωρίς αμφισβήτηση.
Με το θάρρος του, με το πνεύμα συγκριτικής έρευνας και φιλομάθειας κατάφερε να ξεκλειδώσει κάποια από τα εσωτερικά μυστικά της φύσης και να φέρει ένα μέρος από το Φως της Ανατολής στη σκοτεινή και μεσαιωνική Δύση. Ήταν πραγματικά ένας πνευματικά ελκυστικός μαθηματικός που κατόρθωσε να συνδέσει τις θεωρητικές παραδόσεις των Ελλήνων και τις μαθηματικές παραδόσεις των Αράβων, εγκαθιδρύοντάς τους στην Ευρώπη. Τα γενικότερα επιτεύγματά του αναγνωρίσθηκαν –και αναγνωρίζονται- χωρίς αμφισβήτηση.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου